

TEST REPORT

Applicant : Zhengzhou Qiyang Industrial Control Technology Co., Ltd.

Address : No.3, Donfang Road, Mazhai Town, Erqi District, Zhengzhou City

: Zhengzhou Qiyang Industrial Control Technology Co., Ltd. Manufacturer

Address : No.3, Donfang Road, Mazhai Town, Erqi District, Zhengzhou City

Product Name : Microcomputer

Model Number : Refer to section 1.1 Model Number

Trademark : ipctech

Date of Receipt : Aug. 03, 2023

Test Date : Aug. 03, 2023 to Aug. 11, 2023

Date of Report : Aug. 11, 2023

The equipment under test was found to be compliance with the Test Result

requirements of the standards applied.

Test Procedure Used:

Standards IEC 60945:2002

IEC 61000-3-2:2019+A1:2021

IEC 61000-3-3:2013+A2:2021+AC:2022-01

ten Huang

Prepared by(Test Engineer): Sten Huang

Reviewer(Supervisor):

Corbin Wang

Approved(Manager):

Levi Xiao

Test Report Tel:4000-875-382

0755-84829082

Web:Http://www.bkc-lab.com

TABLE OF CONTENT

ı	est Report Declaration	Page
1.	GENERAL INFORMATION	5
	1.1. Description of Device (EUT)	5
	1.2. Independent Operation Modes	5
	1.3. TEST SUMMARY	
	1.4. Special Accessories and Auxiliary Equipment	
	1.5. Test Uncertainty	
_	1.6. Test Facility	
	TEST INSTRUMENT USED	
3.	CONDUCTED EMISSION AT THE MAINS TERMINALS TEST	
	3.1. Block Diagram Of Test Setup	
	3.2. Test Standard	10
	3.3. Power Line Conducted Emission Limit	
	3.4. EUT Configuration on Test	
	3.5. Operating Condition of EUT	10 11
	3.7. Test Result	
1	RADIATION EMISSION TEST	
٦.	4.1. Block Diagram of Test Setup	
	4.2. Test Standard	14 1 <i>1</i>
	4.3. Radiation Limit	
	4.4. FUT Configuration on Test	15
	4.5. Operating Condition of EUT	15
	4.6. Test Procedure	15
	4.7. Test Result	
5.	HARMONIC CURRENT EMISSION TEST	
	5.1. Block Diagram of Test Setup	
	5.2. Test Standard	
	5.3. Operating Condition of EUT	
	5.4. Test Procedure	
_		
ъ.	TAGE FLUCTUATIONS & FLICKER TEST	
	6.1. Block Diagram of Test Setup	
	6.2. Test Standard	
	6.4. Test Procedure	
	6.5. Test Results	
7.	ELECTROSTATIC DISCHARGE IMMUNITY TEST	
	7.1. Block Diagram of Test Setup	
	7.2. Test Standard	
	7.3. Severity Levels and Performance Criterion	
	7.4. EUT Configuration	23
	7.5. Operating Condition of EUT	23
	7.6. Test Procedure	
	7.7. Test Results	24
8.	RF FIELD STRENGTH SUSCEPTIBILITY TEST	
8.	8.1. Block Diagram of Test Setup	25
8.		25 26

8.4. EUT Configuration on Test	26
8.5. Operating Condition of EUT	
8.6. Test Procedure	
8.7. Test Results	
9. ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST	28
9.1. Block Diagram of EUT Test Setup	28
9.2. Test Standard	28
9.3. Severity Levels and Performance Criterion	28
9.4. EUT Configuration on Test	
9.5. Operating Condition of EUT	
9.6. Test Procedure	
9.7. Test Results	
10. SURGE TEST	31
10.1. Block Diagram of EUT Test Setup	31
10.2. Test Standard	
10.3. Severity Levels and Performance Criterion	
10.4. EUT Configuration on Test	
10.5. Operating Condition of EUT	
10.6. Test Procedure	
11. INJECTED CURRENTS SUSCEPTIBILITY TEST	
11.1. Block Diagram of EUT Test Setup	
11.2. Test Standard	
11.3. Severity Levels and Performance Criterion	
11.4. EUT Configuration on Test	
11.6. Test Procedure	
11.7. Test Result	
12. MAGNETIC FIELD IMMUNITY TEST	
12.1. Block Diagram of Test Setup	37
12.3. Severity Levels and Performance Criterion	
12.4. EUT Configuration on Test	
12.5. Operating Condition of EUT	
12.6. Test Procedure	
12.7. Test Results	
13. VOLTAGE DIPS AND INTERRUPTIONS TEST	39
13.1. Block Diagram of EUT Test Setup	
13.2. Test Standard	
13.3. Severity Levels and Performance Criterion	
13.4. EUT Configuration on Test	
13.5. Operating Condition of EUT	
13.6. Test Procedure	40
13.7. Test Result	
14. TEST PHOTOGRAPHS	42
15. PHOTOGRAPHS	

	Revision History of This Test Report				
Report Number	Description	Issued Date			
BKC23051487EE	Initial Issue	2023-08-11			

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : Microcomputer

QY-B5700, QY-B5100, QY-B5200, QY-B5300, QY-B5400, QY-B5500, QY-B5600, QY-B5610, QY-B5800, QY-B5801, QY-B5900, QY-B6000, QY-B7000, QY-B7100, QY-B8000, QY-B9000, QY-P8080, QY-P8101, QY-P8104, QY-P8121, QY-P8133, QY-P8150, QY-P8156, QY-P8170, QY-P8185, QY-P8190, QY-P8215, QY-P5080, QY-P5101, QY-P5104,

Report No.: BKC23051487EE

Model Number : QY-P5121, QY-P5133, QY-P5150, QY-P5156, QY-P170,

QY-P5185, QY-P5190, QY-P5215, QY-P6080, QY-P6101, QY-P6104, QY-P6121, QY-P6133, QY-P6150, QY-P6156, QY-P170, QY-P6185, QY-P6190, QY-P6215, QY-F5080, QY-F5101, QY-F5104, QY-F5121, QY-F5133, QY-F5150, QY-F5156, QY-F5170, QY-F5185, QY-F5190, QY-F5215, QY-U1000, QY-U2000, QY-U3000, QY-U3500, QY-U4000.

Model Difference : The product is different for model name.

Power Supply : 9-36V

Work Frequency : Above 108MHz

Note:

1) EUT: Equipment under test

2) QY-B5700 was selected as the test model and the datas have been recorded in this report.

1.2. Independent Operation Modes

Test Voltage: AC 230V/50Hz

Test Mode A: On Mode

Remark: The test data of the worst case condition(s) was reported on the following page.

1.3.TEST SUMMARY

Test Procedures According To The Technical Standards:

EMC Emission						
Standard	Test Item	Limit	Judgment	Remark		
	AC Port Conducted Emission		PASS			
	Radiated Emission	Class B	PASS			
IEC 60945:2002	Asymmetric Mode Conducted Emissions	Class B	N/A			
	Conducted Differential Voltage Emissions	Class B	N/A			
EN IEC 61000-3-2:2019 +A1:2021	Harmonic Current Emission	Class A or D NOTE (2)	N/A			
EN 61000-3-3:2013+ A1:2019+A2:2021	Voltage Fluctuations & Flicker		PASS			
	EMC Immunit	y				
Standard IEC 60945:2002	Test Item	Performance Criteria	Judgment	Remark		
IEC 61000-4-2:2008	Electrostatic Discharge	В	PASS			
IEC 61000-4-3: 2020	RF electromagnetic field	A	PASS			
IEC 61000-4-4:2012	Fast transients	В	PASS			
IEC 61000-4-5:2014+ A1:2017	Surges	В	PASS			
IEC 61000-4-6:2013	Injected Current	A	PASS			
IEC 61000-4-8:2009	Power Frequency Magnetic Field	Α	N/A	Note(3)		
IEC 61000-4-11:2020	Volt. Interruptions Volt. Dips	B/C/C NOTE (4)	PASS			

NOTE:

- (1)"N/A" denotes test is not applicable in this Test Report
- (2) The power consumption of EUT is less than 75W and no limits apply.
- (3) The EUT don't containing magnetic field sensitive components.
- (4) Voltage dip: 100% reduction Performance Criteria B
- Voltage dip: 30% reduction Performance Criteria C
- Voltage Interruption: 100% Interruption Performance Criteria C
- (5) For client's request and manual description, the test will not be executed.

1.4. Special Accessories and Auxiliary Equipment

Description	Manufacturer	Model No.	Serial No.
DISPLAY	DELL	/	/

1.5. Test Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

A. Conducted Measurement:

Method	Measurement Frequency Range	U,(dB)	NOTE
CISPR	0.10 MHz ~ 30MHz	3.01	
16-4-2:2018	0. 10 WITZ ~ 30WITZ	3.01	

B. Radiated Measurement:

Method	Measurement Frequency Range	U,(dB)	NOTE
CISPR	0.15MHz ~ 2000MHz	4.25	
16-4-2:2018	2GHz ~6GHz	5.1	

1.6. Test Facility

Site Description

Name of Firm : Shenzhen BKC Testing Co., Ltd.

Site Location : 103, 1/F, Huaya Science Park, Longhua Community,

Longhua District, Shenzhen, Guangdong, China.

2. TEST INSTRUMENT USED

2.1 CONDUCTED TEST SITE

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	LISN	R&S	ENV216	102762	Mar .19 .2024
2	EMI Test Receiver	R&S	ESCI	101424	Mar .19 .2024
3	Rf cables	HTEC	HCE 2M-CE	N/A	Mar .19 .2024
4	Coupling/ Decoupling Network	Diamond	CX210	N/A	Mar .19 .2024

2.2 RADIATED TEST SITE

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Antenna	Schwarzbeck	VULB 9168	01321	Mar .31 .2025
2	EMI Test Receiver	R&S	ESRP	101478	Mar .19 .2024
3	Preamplifier	HP	8447D	2727A05345	Mar .19 .2024
4	Rf cables	HUBER+SUHNER	8M-RE	N/A	Mar .19 .2024
5	Rf cables	HUBER+SUHNER	1.5M-RE	N/A	Mar .19 .2024
6	Rf cables	HUBER+SUHNER	1.5M-AP-RE	N/A	Mar .19 .2024

2.3 HARMONICS AND FLICKER

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Harmonic & Flicker	Laplace	AC2000A	550507	Mar .19 .2024
2	AC Power Source	Laplace	HPHF4010	N/A	Mar .19 .2024

2.4 Electrostatic Discharge

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	ESD TEST GENERATOR	HTEC	HESD16	N/A	Mar .19 .2024

2.5 RS

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Signal Generator	R&S	SMT 06	832080/007	Mar .19 .2024
2	Log-Bicon Antenna	Schwarzbeck	VULB9161	4022	Mar .19 .2024
3	Power Amplifier	AR	150W1000M1	320946	Mar .19 .2024
4	Microwave Horn Antenna	AR	AT4002A	321467	Mar .19 .2024
5	Power Amplifier	AR	25S1G4A	308598	Mar .19 .2024

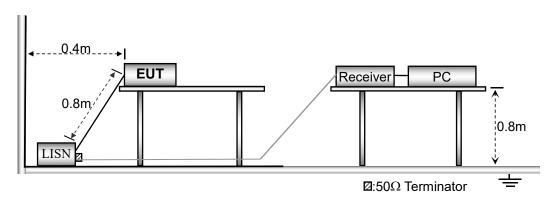
Report No.: BKC23051487EE

2.6 SURGE, EFT/BURST, VOLTAGE INTERRUPTION/DIPS

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Surge /DIPS /EFT Generator	HTEC	ECOMPACT5 216201		Mar .19 .2024	
2	Programmable AC power supply	HTEC	HV1P16T	204102	Mar .19 .2024	
3	Capacitive coupling pliers	HTEC	Н3С	213602	Mar .19 .2024	
4	Single phase isolating transformer	HTEC	BK-5KVA	N/A	Mar .19 .2024	

2.7 INJECTION CURRENT

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Signal Generator Schloder		CDG7000	202301/368	Mar .19 .2024	
2	CDN SKET		M2/M3-16A	212303	Mar .19 .2024	
3	Attenuator	Schloder	CDG601000	3107	Mar .19 .2024	



Test Report

3. CONDUCTED EMISSION AT THE MAINS TERMINALS TEST

3.1.Block Diagram Of Test Setup

Report No.: BKC23051487EE

3.2. Test Standard

IEC 60945:2002

3.3. Power Line Conducted Emission Limit

Frequer	ісу	Limits dB(μV)				
MHz		Quasi-peak Le	vel	Average Level		
0.10 ~	0.15	99 ~ 50*		1		
0.15 ~	0.35	60 ~ 50*			1	
0.35 ~ 3	30.00	50 /				

Notes: 1. *Decreasing linearly with logarithm of frequency.

3.4.EUT Configuration on Test

The following equipments are installed on conducted emission test to meet EN 60945 requirement and operating in a manner which tends to maximize its emission characteristics in a normal application.

3.5. Operating Condition of EUT

- 3.5.1 Setup the EUT and simulators as shown in Section 3.1.
- 3.5.2 Turn on the power of all equipments.
- 3.5.3 Let the EUT work in test modes and test it.

^{2.} The lower limit shall apply at the transition frequencies.

3.6. Test Procedure

The EUT is put on the ground and connected to the AC mains through a Artificial Mains Network (AMN). This provided a 50ohm coupling impedance for the tested equipments. Both sides of AC line are checked to find out the maximum conducted emission levels according to the EN 60945 regulations during conducted emission test.

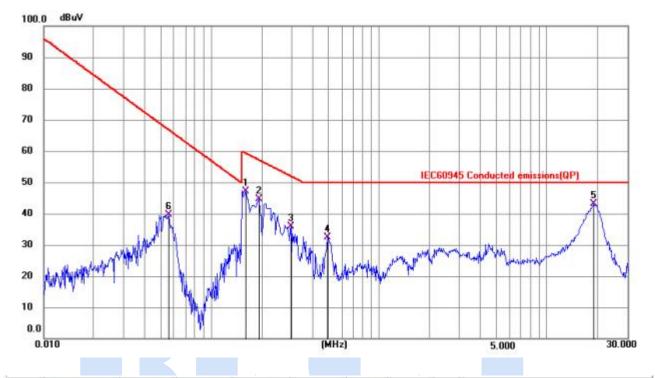
Report No.: BKC23051487EE

The bandwidth of the test receiver (R&S Test Receiver ESCI) is set at 9KHz.

The frequency range from 150 KHz to 30 MHz is investigated.

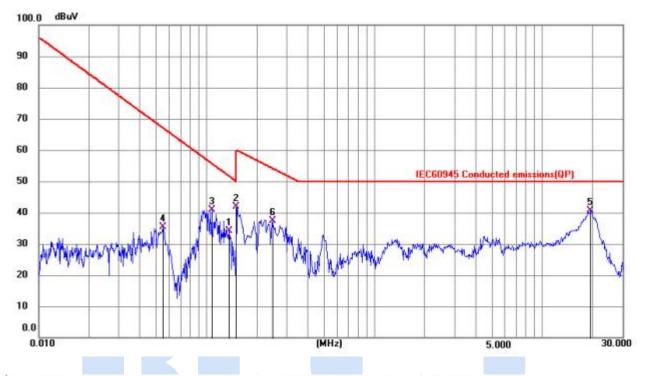
3.7. Test Result

Please refer to the following page.



Test Report Tel:4000-875-382 0755-84829082 Web:Http://www.bkc-lab.com Page 11 of 46

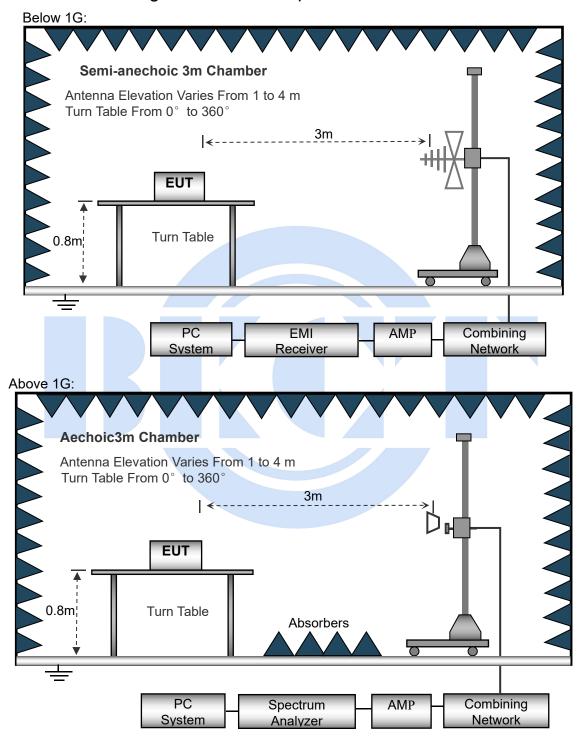
st Data	Mains Terminals Te	nducted Emission At The	
56%	Relative Humidity:	25.1°C	Temperature:



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1590	37.47	9.55	47.02	59.31	-12.29	QP	Р	
2	0.1905	34.95	9.67	44.62	57.18	-12.56	QP	Р	
3	0.2939	26.14	9.68	35.82	52.06	-16.24	QP	Р	
4	0.4919	22.80	9.61	32.41	50.00	-17.59	QP	Р	
5 *	18.8610	33.50	9.64	43.14	50.00	-6.86	QP	Р	
6	0.0558	29.87	9.78	39.65	66.80	-27.15	QP	P	

Conducted Emission At The Mains Terminals Test Data							
Temperature:	25.1°C	Relative Humidity:	56%				
Pressure:	1008hPa	Phase :	Neutral				

Test Voltage : AC 230V/50Hz Test Mode: On Mode



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1360	24.55	9.57	34.12	51.66	-17.54	QP	Р	
2	0.1508	32.46	9.51	41.97	59.94	-17.97	QP	Р	
3	0.1068	31.25	9.68	40.93	55.77	-14.84	QP	Р	
4	0.0543	25.65	9.79	35.44	67.26	-31.82	QP	Р	7
5 *	19.3141	30.98	9.62	40.60	50.00	-9.40	QP	Р	
6	0.2459	27.60	9.69	37.29	54.17	-16.88	QP	Р	

4. RADIATION EMISSION TEST

4.1. Block Diagram of Test Setup

4.2.Test Standard EN 60945:2002

4.3. Radiation Limit

Frequency	Distance	Field Strengths Limits	Detector
MHz	(Meters)	dB(μV)/m	
$0.15 \sim 0.30$	3	80 ~ 52*	QP
$0.30 \sim 30.0$	3	52 ~ 34*	QP
30.0 ~ 2000	3	54	QP

Report No.: BKC23051487EE

Remark:

- (1) Emission level (dB(μ V)/m) = 20 log Emission level (μ V/m)
- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance refers to the distance in meters between the measuring instrument, antenna and the closed point of any part of the device or system.

4.4.EUT Configuration on Test

The EN 60945 regulations test method must be used to find the maximum emission during radiated emission test.

The configuration of EUT is the same as used in conducted emission test. Please refer to Section 3.4.

4.5. Operating Condition of EUT

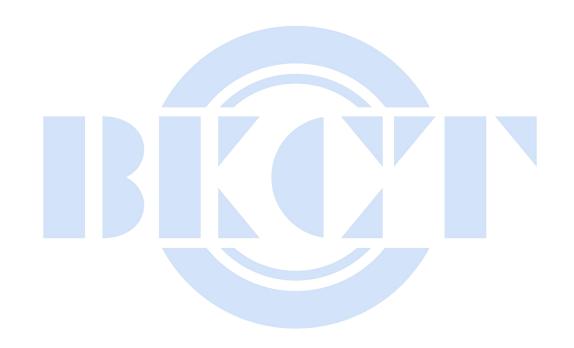
Same as conducted emission test, which is listed in Section 3.4 except the test set up replaced as Section 4.1.

4.6. Test Procedure

The EUT and its simulators are placed on a turned table that is 0.8 meter above the ground. The turned table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna that is mounted on the antenna tower. The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated biconical and log periodical antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna is set on test. In order to find the maximum emission levels, the interface cable must be manipulated according to EN 60945 on radiated emission test.

The bandwidth setting on the field strength meter is set at 120KHz below 1GHz, set at 1MHz above 1GHz

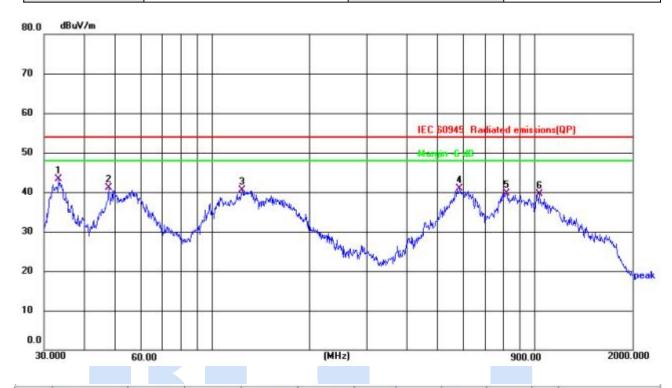
4.7. Test Result


PASS

Please refer to the following page.

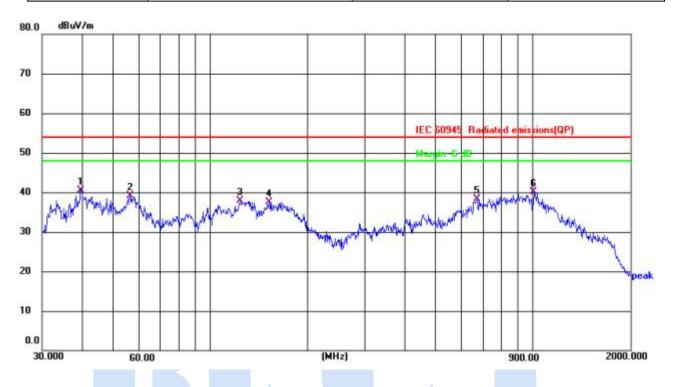
	Test Condition: Normal Mode										
F	Receiver	Turn	RX An	tenna		Substitut	ted	Absolute	1 : :4	M	
Frequency	Reading	table Angle	Height	Polar	SG Level	Cable	Antenna Gain	Level	Limit	Margin	
(MHz)	(dBµV)	Degree	(m)	(H/V)	(dBm)	(dB)	(dB)	(dBm)	(dBm)	(dB)	
0.15	44.91	35	1.3	Н	33.02	0.18	0.00	32.84	80	-47.16	
0.15	45.31	49	1.9	V	20.61	0.18	0.00	20.43	80	-59.57	
30	50.31	131	1.3	Н	23.21	2.30	11.50	32.41	54	-21.59	
30	48.35	159	1.2	V	22.34	2.30	11.50	31.54	54	-22.46	

Test Report Tel:4000-875-382


0755-84829082

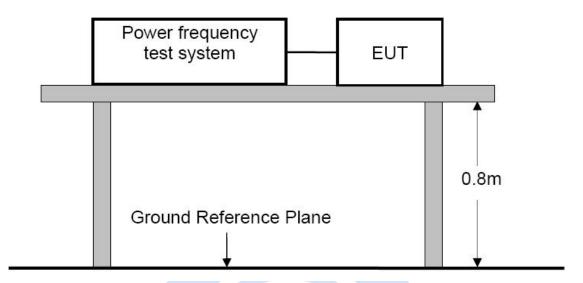
Web:Http://www.bkc-lab.com

Radiation Emission Test Data							
Temperature:	25.1°C	Relative Humidity:	56%				
Pressure:	1008hPa	Phase :	Horizontal				
Test Voltage :	AC 230V/50Hz	Test Mode:	On Mode				



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	33.3210	60.16	-16.78	43.38	54.00	-10.62	QP			Р	
2	47.6158	57.35	-16.30	41.05	54.00	-12.95	QP			Р	
3	123.5317	58.44	-17.97	40.47	54.00	-13.53	QP			Р	
4	581.8363	50.02	-9.19	40.83	54.00	-13.17	QP			Р	
5	814.1670	44.11	-4.38	39.73	54.00	-14.27	QP			Р	
6	1030.036	39.49	0.00	39.49	54.00	-14.51	QP			Р	

Radiation Emission Test Data								
Temperature:	25.1°C	Relative Humidity:	56%					
Pressure:	1008hPa	Phase :	Vertical					
Test Voltage :	AC 230V/50Hz	Test Mode:	On Mode					



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	39.5820	56.31	-15.76	40.55	54.00	-13.45	QP			Р	
2	56.3258	56.12	-17.09	39.03	54.00	-14.97	QP			P	
3	123.5317	55.94	-17.97	37.97	54.00	-16.03	QP			Р	
4	151.7572	53.35	-15.81	37.54	54.00	-16.46	QP			Р	
5	668.3282	45.72	-7.36	38.36	54.00	-15.64	QP			Р	
6	1004.405	40.13	0.00	40.13	54.00	-13.87	QP			Р	

5. HARMONIC CURRENT EMISSION TEST

5.1. Block Diagram of Test Setup

5.2. Test Standard

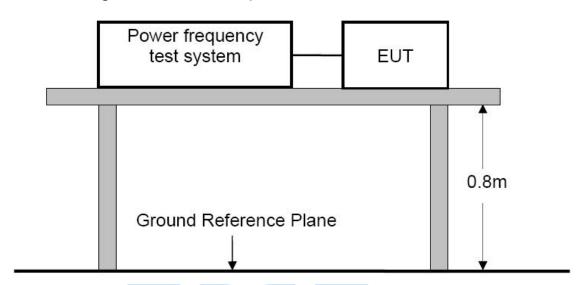
IEC 61000-3-2:2019+A1:2021

5.3. Operating Condition of EUT

- 5.3.1 Setup the EUT as shown in Section 5.1.
- 5.3.2 Turn on the power of all equipments.
- 5.3.3 Let the EUT work in test mode (ON) and test it.

5.4. Test Procedure

The power cord of the EUT is connected to the output of the test system. Turn on the power of the EUT and use the test system to test the harmonic current level.


5.5. Test Results

N/A

6. TAGE FLUCTUATIONS & FLICKER TEST

6.1. Block Diagram of Test Setup

6.2. Test Standard

IEC 61000-3-3:2013+A2:2021+AC:2022-01

6.3. Operating Condition of EUT

Same as Section 5.3. The power cord of the EUT is connected to the output of the test system. Turn on the power of the EUT and use the test system to test the harmonic current level.

Flicker Test Limit

Test items	Limits
Pst	1.0
dc	3.3%
dmax	4.0%
dt	Not exceed 3.3% for
	500ms

6.4. Test Procedure

The power cord of the EUT is connected to the output of the test system. Turn on the power of the EUT and use the test system to test the harmonic current level.

6.5. Test Results

PASS

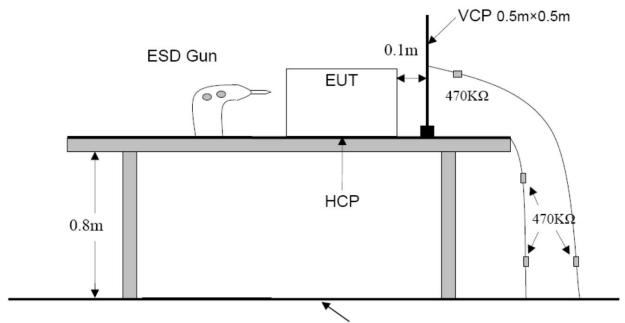
Note:

The EUT does not contain any automatic switching component and the power consumption is low.

Report No.: BKC23051487EE

According to the electrical construction, the EUT does not produce inrush current, which may exceed 20A. The supply current will not fluctuate more than 1.5A either.

According to EN 61000-3-3:2013+A2:2021+AC:2022-01, clause 6.1*, the EUT deems to fulfil the requirement without further testing.


*) EN 61000-3-3:2013+A2:2021+AC:2022-01, clause 6.1: "For voltage changes caused by manual switching, equipment is deemed to comply without further testing if the maximum r.m.s. input current evaluated over each 10ms half-period between zero-crossings does not exceed 20A, and the supply current after inrush is within a variation band of 1,5A."

7. ELECTROSTATIC DISCHARGE IMMUNITY TEST

7.1. Block Diagram of Test Setup

Ground Reference Plane (GRP)

7.2. Test Standard

IEC 60945:2002

Severity Level: 3 / Air Discharge:±8KV Level: 3 / Contact Discharge:±6KV

7.3. Severity Levels and Performance Criterion

7.3.1 Severity level

Level	Test Voltage Contact Discharge (KV)	Test Voltage Air Discharge (KV)
1.	±2	±2
2.	±4	±4
3.	±6	±8
4.	±8	±15
Х	Special	Special

Test Report

7.3.2 Performance criterion: B

A. The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended.

Report No.: BKC23051487EE

- **B.** The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
- **C.** Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

7.4.EUT Configuration

The following equipments are installed on Electrostatic Discharge Immunity test to meet EN 60945:2002, IEC 61000-4-2:2008, requirement and operating in a manner which tends to maximize its emission characteristics in a normal application. The configuration of EUT is the same as used in conducted emission test.

Please refer to Section 3.4

7.5. Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 3.5 except the test setup replaced by Section 7.1

7.6. Test Procedure

7.6.1 Air Discharge:

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

7.6.2 Contact Discharge:

All the procedure shall be same as Section 7.6.1. Except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

7.6.3 Indirect discharge for horizontal coupling plane

At least 10 single discharges (in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the center point of each unit (if applicable) of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

Report No.: BKC23051487EE

7.6.4 Indirect discharge for vertical coupling plane

At least 10 single discharges (in the most sensitive polarity) shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are complete illuminated.

7.7. Test Results

PASS

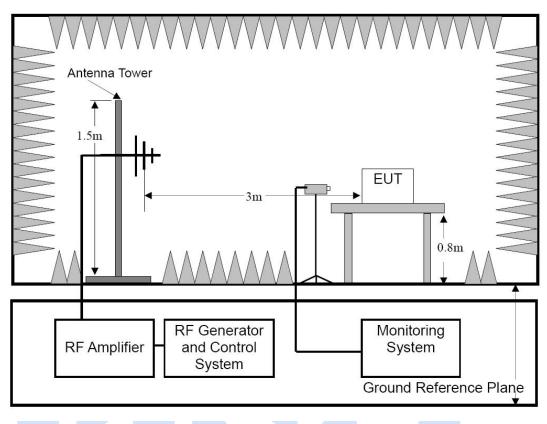
Please refer to the following page.

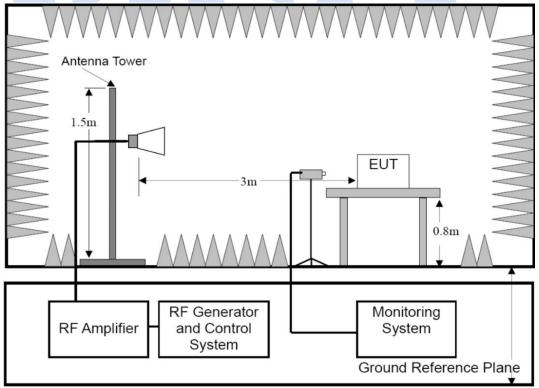
ESD Test Data				
Temperature: 25.1°C Humidity: 54%				
Power Supply :	AC 230V/50Hz	Test Mode:	On Mode	

Air Discharge: ± 8KV

Contact Discharge: ± 4KV

For each point positive 10 times and negative 10 times discharge


Test Points	Air Discharge	Contact Discharge	Performance Criterion	Result
Metal Enclosure	N/A	±6 KV	В	PASS
Port	N/A	±6 KV	В	PASS
VCP	N/A	±6 KV	В	PASS
HCP	N/A	±6 KV	В	PASS


Note: N/A

8. RF FIELD STRENGTH SUSCEPTIBILITY TEST

8.1. Block Diagram of Test Setup

8.2.Test Standard

EN 60945:2002, IEC 61000-4-3:2020 Severity Level 3, 3V / m

8.3. Severity Levels and Performance Criterion

8.3.1. Severity level

Level	Field Strength V/m
1.	1
2.	3
3.	10
X.	Special

8.3.2. Performance criterion: A

- A. The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended.
- B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
- C Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

8.4.EUT Configuration on Test

The following equipments are installed on Electrical Fast Transient/Burst Immunity test to meet IEC 61000-4-3:2020, requirement and operating in a manner which tends to maximize its emission characteristics in a normal application. The configuration of EUT is the same as used in conducted emission test. Please refer to Section 3.4.

8.5. Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 2.5 except the test setup replaced by Section 8.1.

8.6. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. EUT is set 3 meter away from the transmitting antenna which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna are set on test. Each of the four sides of EUT must be faced this transmitting antenna and measured individually.

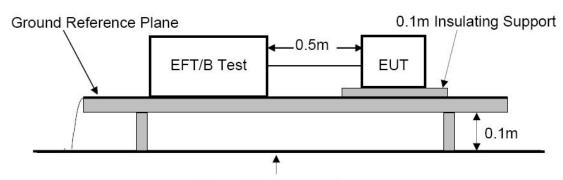
Report No.: BKC23051487EE

All the scanning conditions are as follows:

	Condition of Test	Remarks
	Fielded Strength	10V/m (Severity Level 3)
2.	Radiated Signal	Modulated
3.	Scanning Frequency	80 – 2000 MHz,80MHz to 2000MHz
4.	Dwell time of radiated	0.0015 decade/s
5.	Waiting Time	1 Sec.

8.7. Test Results

PASS


Please refer to the following page.

R/S Test Data				
Temperature : 25.1°C		Humidity: 53%	6	
Field Strength: 3 V/m		Criterion: A		
Power Supply: AC 230V	7/50Hz	Frequency Ra	nge: 80 Mł	Hz to 2000 MHz
Modulation:	☑ AM □ Pulse	□none	1 KHz 80)%
Test Mode: On Mode				
	0 MHz to 2000	MHz		
Steps	1 %			
	Horizontal	Vertical		Result
Front	А	Α		Pass
Right	A		Pass	
Rear A		Α		Pass
Left A		А		Pass
Note: N/A				

9. ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST

9.1.Block Diagram of EUT Test Setup

Ground Reference Plane

9.2. Test Standard

EN 60945:2002, IEC 61000-4-4:2012

9.3. Severity Levels and Performance Criterion

Severity Level 3 at 1KV, Pulse Rise time & Duration: 5 nS / 50 nS Severity Level:

	Open Circuit Output Test Voltage ±10%			
Lovol	On nower ports	On I/O(Input/Output)		
Level	On power ports	Signal data and control ports		
1.	0.5KV	0.25KV		
2.	1KV	0.5KV		
3.	2KV	1KV		
4.	4KV	2KV		
X.	Special	Special		

Performance criterion: B

- A. The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended.
- B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
- C. Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

9.4.EUT Configuration on Test

The following equipments are installed on Electrical Fast Transient/Burst Immunity test to meet EN 60945:2002, IEC 61000-4-4:2012, requirement and operating in a manner which tends to maximize its emission characteristics in a normal application. The configuration of EUT is the same as used in conducted emission test.

Report No.: BKC23051487EE

Please refer to Section 3.4.

9.5. Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 3.5 except the test setup replaced by Section 9.1.

9.6. Test Procedure

EUT shall be placed 0.8m high above the ground reference plane which is a min.1m*1m metallic sheet with 0.65mm minimum thickness. This reference ground plane shall project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5m

9.6.1. For input and output AC power ports:

The EUT is connected to the power mains by using a coupling device which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 minutes.

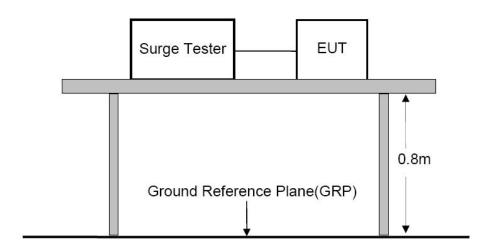
9.7.Test Results

PASS

Please refer to the following page.

EFT Test Data				
Temperature:	24.5°C	Humidity:	53%	
Power Supply:	AC 230V/50Hz	Test Mode:	On Mode	

	T ()////	Performance	Result
Coupling Line	Test Voltage	Criterion	
L	±2kV	В	PASS
N	±2kV	В	PASS
L-N	±2kV	В	PASS
PE	±2kV	В	PASS
L-PE	±2kV	В	PASS
N-PE	±2kV	В	PASS
L-N-PE	±2kV	В	PASS
DC Line*	0.5KV	В	N/A
Signal line*	0.5KV	В	M/A


Note: '*' Applicable only to cables which according to the manufacturer's specification supports communication on cable lengths greater than 3 m.

Test Report

10. SURGE TEST

10.1. Block Diagram of EUT Test Setup

10.2. Test Standard

EN 60945:2002, IEC 61000-4-5:2014+A1:2017

10.3. Severity Levels and Performance Criterion

Severity Level: Line to Line, Level 1 at 0.5KV; Severity Level: Line to Earth, Level 2 at 1KV.

Severity Level	Open-Circuit Test Voltage (KV)
1.	0.5
2.	1.0
3.	2.0
4.	4.0
X.	Special

Performance criterion: B

- A. The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended.
- B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
- C. Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

10.4. EUT Configuration on Test

The following equipments are installed on Electrical Fast Transient/Burst Immunity test to meet EN 60945:2002,

IEC 61000-4-5:2014+A1:2017 requirement and operating in a manner which tends to maximize its emission characteristics in a normal application

Report No.: BKC23051487EE

The configuration of EUT is the same as used in conducted emission test. Please refer to Section 3.4.

10.5. Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 3.5 except the test setup replaced by Section 10.1.

10.6. Test Procedure

- 1) Set up the EUT and test generator as shown on section 10.1
- 2) For line to line coupling mode, provide a 1KV 1.2/50us voltage surge (at open-circuit condition) and 8/20us current surge to EUT selected points.
- 3) At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test.
- 4) Different phase angles are done individually.
- 5) Repeat procedure 2) to 4) except the open-circuit test voltage change from 1KV to 2KV for line to earth coupling mode test.
- 6) Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

10.7. Test Result

PASS

Please refer to the following page.

Report No.: BKC23051487EE

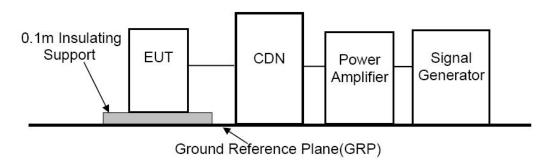
Surge Test Data				
Temperature:	24.5°C	Humidity:	53%	
Power Supply :	AC 230V/50Hz	Test Mode:	On Mode	

Location	Polarity	Phase Angle	No of Pulse	Pulse Voltage (KV)	Performance Criterion	Result
1. NI	+	90	5	0.5		Pass
L-N	-	270	5	0.5		Pass
LDE	+	90	5	1		Pass
L-PE	-	270	5	1	,	Pass
N DE	-	90	5	1	В	Pass
N-PE	+	270	5	1	_	Pass
DC Line*	-	90	5	0.5		NI/A
DC Line*	+	270	5	0.5		N/A
Signal	-	90	5	0.5		N/A
Line*	+	270	5	0.5		IN/A

Note: '*' Applicable only to cables which according to the manufacturer's specification supports communication on cable lengths greater than 3 m.

Test Report

Tel:4000-875-382


0755-84829082

Web:Http://www.bkc-lab.com

11. INJECTED CURRENTS SUSCEPTIBILITY TEST

11.1. Block Diagram of EUT Test Setup

11.2. Test Standard

EN 60945:2002, IEC 61000-4-6:2013

11.3. Severity Levels and Performance Criterion

Severity Level 2: 3V(rms), 150KHz \sim 80MHz Severity Level:

Level		Field Strength V			
	1.			1	
	2.			3	
	3.			10	
	X.			Special	

Performance criterion: A

- A. The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended.
- B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
- C. Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

11.4. EUT Configuration on Test

The configuration of EUT is the same as used in conducted emission test. Please refer to Section 3.4.

Report No.: BKC23051487EE

11.5. Operating Condition of EUT

Same as conducted emission test, which is listed in Section 3.5 except the test set up replaced as Section 11.1.

11.6. Test Procedure

- 1) Set up the EUT, CDN and test generator as shown on section 11.1
- 2) Let EUT work in test mode and measure.
- 3) The EUT and supporting equipments are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane at above 0.1-0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).
- 4) The disturbance signal described below is injected to EUT through CDN.
- The EUT operates within its operational mode(s) under intended climatic conditions after power on.
- 6) The frequency range is swept from 150KHz to 10MHz using 3V signal level, 10-30MHz Using 3V to 1V signal level(Where the amplitude of a test level varies over a given frequency range, it changes linearly with respect to the logarithm of the frequency),30-80Mhz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1KHz sine wave
- 7) The rate of sweep shall not exceed 1.5×10⁻³ decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
- 8) Recording the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

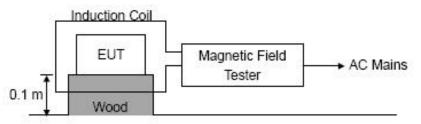
11.7. Test Result

PASS

Please refer to the following page.

Shenzhen BKC Testing Co., Ltd. Report No.: BKC23051487EE

CS Test Data								
Temperature:		24.5°C		Humidity:		53%		
Power St	Power Supply :		AC 230V/50Hz		Test Mode:		On Mode	
Frequency Range(MHz)	Injected Position	Strength	Modulation Signal	Freq. Step	Performance Criterion		Result	
0.15~10	0.15~10 AC Line		AM 80%, 1kHz sine wave	1%	А		Pass	
10~30	AC Line	3V to 1V(rms), Unmodulated	AM 80%, 1kHz sine wave	1%		A	Pass	
30~80	AC Line	1V(rms) Unmodulated	AM 80%, 1kHz sine wave	1%		A	Pass	
0.15~10	DC Line*	3V(rms), Unmodulated	AM 80%, 1kHz sine wave	1%		A	N/A	
10~30	DC Line*	3V to 1V(rms), Unmodulated	AM 80%, 1kHz sine wave	1%		A	N/A	
30~80	DC Line*	1V(rms) Unmodulated	AM 80%, 1kHz sine wave	1%		A	N/A	
0.15~10	Signal Line*	3V(rms), Unmodulated	AM 80%, 1kHz sine wave	1%		A	N/A	
10~30	Signal Line*	3V to 1V(rms), Unmodulated	AM 80%, 1kHz sine wave	1%		A	N/A	
30~80 Signal Line*		1V(rms) Unmodulated	AM 80%, 1kHz sine wave	1%		A	N/A	


Note: '*' Applicable only to cables which according to the manufacturer's specification supports communication on cable lengths greater than 3 m.

Test Report

12. MAGNETIC FIELD IMMUNITY TEST

12.1. Block Diagram of Test Setup

Ground Reference Support

12.2. Test Standard

EN 60945:2002, IEC 61000-4-8:2009 Severity Level 1 at 1A/m

12.3. Severity Levels and Performance Criterion

11.3.1 Severity level

Level	Magnetic Field Strength A/m		
1.	1		
2.	3		
3.	10		
4.	30		
5.	100		
X.	Special		

11.3.2 Performance criterion: B

- A. The apparatus shall continue to operate as intended during and after the test.
- B. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended.
- C. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.

D. Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

Report No.: BKC23051487EE

12.4. EUT Configuration on Test

The configuration of EUT is listed in Section 3.4.

12.5. Operating Condition of EUT

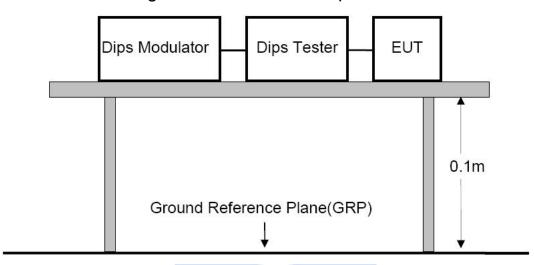
Same as conducted emission test, which is listed in Section 3.5 except the test set up replaced as Section 12.1.

12.6. Test Procedure

The EUT shall be subjected to the test magnetic field by using the induction coil of standard dimensions (1m*1m) and shown in Section 12.1. The induction coil shall then be rotated by 90° in order to expose the EUT to the test field with different orientations.

12.7. Test Results

N/A


The EUT don't containing magnetic field sensitive components.

Test Report

13. VOLTAGE DIPS AND INTERRUPTIONS TEST

13.1. Block Diagram of EUT Test Setup

13.2. Test Standard

EN 60945:2002, IEC 61000-4-11:2020

13.3. Severity Levels and Performance Criterion

Severity Level:

Input and Output AC Power Ports.

- ☑ Voltage Dips.
- ☑ Voltage Interruptions.

Environmental	Test Specification	Units	Performance
Phenomena			Criterion
	>95	% Reduction	В
Voltage Dips	0.5	period	Ь
	30	% Reduction	С
	25	period	
Voltage	>95	% Reduction	С
Interruptions	250	period	C

Performance criterion: B, C, C

A. The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended.

B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.

Report No.: BKC23051487EE

C. Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

13.4. EUT Configuration on Test

The configuration of EUT is the same as used in conducted emission test. Please refer to Section 3.4.

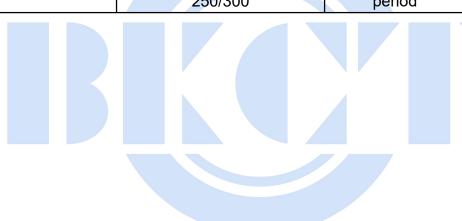
13.5. Operating Condition of EUT

Same as conducted emission test, which is listed in Section 3.5 except the test set up replaced as Section 13.1.

13.6. Test Procedure

- 1) Set up the EUT and test generator as shown on section 13.1
- 2) The interruption is introduced at selected phase angles with specified duration. There is a 3mins minimum interval between each test event.
- 3) After each test a full functional check is performed before the next test.
- Repeat procedures 2 & 3 for voltage dips, only the level and duration is changed.
- 5) Record any degradation of performance.

13.7. Test Result


PASS

Please refer to the following page.

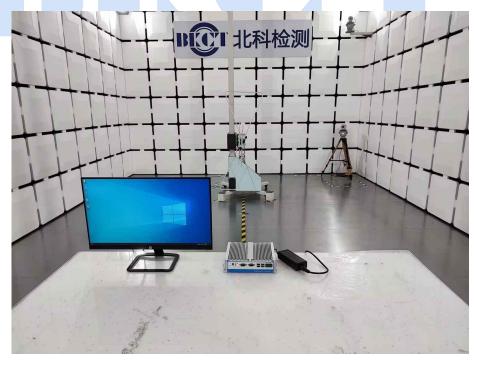
BKOT

DIPS Test Data					
Temperature:	perature: 24.5°C		53%		
Power Supply: AC 230V/50Hz AC 230V/60Hz		Test Mode:	On Mode		
Environmental Phenomena	Test Specification	Units	Performance Criterion		
Voltage Dine	>95 0.5	% Reduction period	В		
Voltage Dips	30 25/30	% Reduction period	С		
Voltage Interruptions	>95 250/300	% Reduction period	С		

Test Report 7

Tel:4000-875-382

0755-84829082


Web:Http://www.bkc-lab.com

14. TEST PHOTOGRAPHS

Conduction Emission Test

Radiated Emission Test(Below 1G)

Test Report

Tel:4000-875-382

ESD Immunity Test

EFT&Surges&Dips Immunity AC Mains Test

15. PHOTOGRAPHS

Photo 1

Photo 2

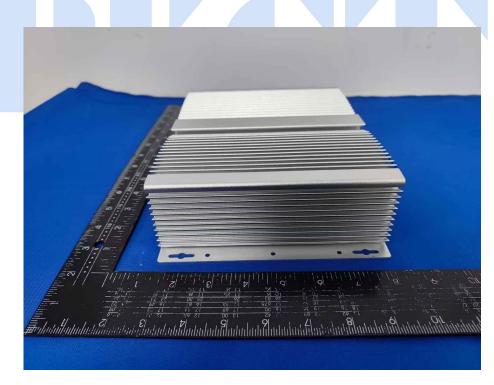


Photo 3

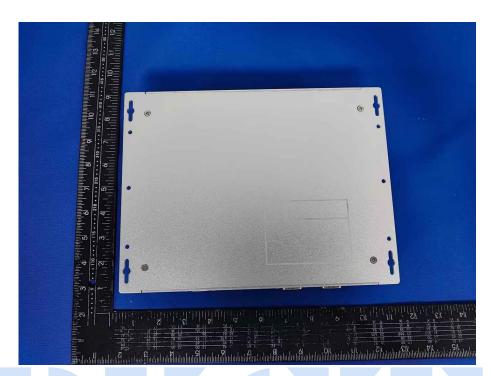


Photo 4

Photo 5

**** * END OF REPORT ****